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We find that transport on scale-free random networks depends strongly on degree-correlated network to-
pologies whereas transport on Erdös-Rényi networks is insensitive to the degree correlation. An approach for
the tuning of scale-free network transport efficiency through assortative or dissortative topology is proposed.
We elucidate that the unique transport behavior for scale-free networks results from the heterogeneous distri-
bution of degrees.
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Introduction. Understanding transport process on net-
works �1� is a central problem in many fields, �1,2� ranging
from social networks to natural or technique networks. For
example, epidemic spreading �3,4� and transportation �5� are
typical phenomena of transport related to social networks,
while the world-wide web, the internet, the biological net-
works and the new network-based materials are technical or
natural networks �2–6�. Usually, we can classify transport on
networks into two categories according to whether the net-
work flow conservation is observed for each node of net-
works: the contamination process �3,4� and the network flow
problem �5–10�.

The network topology has a profound implication for net-
work transport �1–10�. One of the important topological fea-
tures in the network structure is the tendency of vertices with
a given degree to be connected to other vertices with similar
degree �assortativity� or dissimilar degree �dissortativity�
�11�. Many real networks exhibit this degree correlation
among their nodes. Such correlation plays an important role
in transport process on networks. For the epidemic spread-
ing, lack of an epidemic threshold has been verified in assor-
tative networks �4�. However, in the network flow problem,
the role of such topological vertex correlation is still unclear.
Understanding the role of the degree correlation on the net-
work flow process is important not only to biological net-
works �1,2� and traditional transportation networks �5�, but
also to the design of new network-based materials. �6� Thus,
some interesting questions are: the degree correlation im-
prove or deteriorate network transport? Can network trans-
port efficiency be optimized through assortative or dissorta-
tive topology?

In this report, we first present the results of transport on
scale-free random networks and Erdös-Rényi networks with
different degree-correlated topologies. Then, a further com-
parison with two empirical networks is made.

Transport on networks. Let G= �N ,A� be a network de-
fined by a set N of nodes and a set A of edges. Each edge
�i , j� connected from node i to node j has an associated cost

function cij, which denotes the cost per unit flow on that
edge. With the quadratic cost function, we can solve the
maximum flow problem through Kirchhof’s equations
�7,12�. This quadratic restriction on the cost function cap-
tures the essential properties of many important physical net-
works �5,7�. Then these equations are solved using the itpack
method �13� parallelly. To characterize the transport capabil-
ity of a whole network �14�, we average the network conduc-
tance Gst between each pair of nodes as

�G� =
1

N�N − 1� �
s,t�N;s�t

Gst, �1�

where s and t run from 1 to N. Larger average conductance
�G� signifies a better transport capability of networks. From
a statistical perspective, a probability density function �8�
�pdf� ��G� can be defined through ��G�dG, which denotes
the probability that two nodes have conductance between G
and G+dG. A cumulative distribution function �cdf� F�G�
can be described by F�G�=�G

���G��dG�.
We use the uncorrelated configuration model �15� to gen-

erate the uncorrelated scale-free networks with the degree
distribution P�k�	k−�, where k is the number of links at-
tached to the node. In fact, scale-free networks generated
from the uncorrelated configuration model belong to the
scale-free random networks. Uncorrelated Erdös-Rényi net-
works are constructed with the standard random method
�16�. We further employ the algorithm of reshuffling links
�17,18� to transform the existing uncorrelated network to
correlated networks. During the following calculation, we
utilize the Newman factor �11� and the mean nearest neigh-
bor function �11� Knn�k� to measure the degree-degree corre-
lation property of networks.

Scale-free random networks. The scale-free networks with
size N=3000 are constructed using the aforementioned
method. To simplify the calculations, we set the value one to
the weight of each edge in the networks, vs=1 and vt=0 for
the source and sink nodes, respectively. The pdf ��G� and
cdf F�G� vs G for scale-free networks with different degree
correlations are illustrated in Fig. 1.*wangjian@yzu.edu.cn
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It can be seen from Figs. 1�A� and 1�C� that the peaks for
the pdf ��G� shift to higher G when the topological struc-
tures vary from assortativity to dissortativity. The change of
average network conductance �G� against the degree corre-
lation coefficient �Newman factor� r is plot in Fig. 2�A�. It
can be found that �G� is significantly reduced when the net-
work topology is assortative. In contrast, the network con-
ductance has been remarkably improved for the dissortative
topology. To quantify such variation in average network con-
ductance with the degree-mixing properties, we introduce the

metrics of network transport efficiency as

� =
�G�r�� − �G�r = 0��

�G�r = 0��
, �2�

where �G�r�� is average conductance for the network with
the Newman factor r and �G�r=0�� is average network con-
ductance for the uncorrelated networks. For �=2.5, we can
find that the network transport efficiency � decreases by 27%
at r=0.289, in contrast with an increase of 21% at r=−0.30

FIG. 1. �Color online� The pdf ��G� and the cdf F�G� vs G for different degree-correlated scale-free networks with �=2.5 and �=3.0.
The values of Newman factors r are illustrated in each figure.

FIG. 2. �Color online� �A� Average network conductance �G� as a function of the Newman factor r. Solid line and dash lines are
theoretical results calculated from Eq. �3�. �B� The mean nearest neighbor function Knn�k� vs the degree k with different degree correlations.
�C� Degree-averaged network conductance gk changes with r. �D� The numerically fitted exponents � for the power-law tail against r. Solid
and dash lines are theoretical predictions.
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as shown in Fig. 2�A�. The scale-free network with �=3.0
shows a similar behavior. Thus we can propose that the
transport efficiency on scale-free networks be controlled by
tuning the dissortative/assortative network topology.

The reason why transport efficiency on scale-free net-
works depends strongly on the degree correlation lies in the
fact that the network conductance between low-degree nodes
can be effectively changed through tuning the degree corre-
lation topology. To demonstrate this, in Fig. 2�C� we plot the
change of the degree-averaged network conductance against
the Newman factor r for the small-degree nodes. Here the
degree-averaged network conductance �gk� means that the
network conductance is averaged over the pairs of nodes,
where either or both nodes have the degree k. It can be seen
that �gk� for both k=2 and k=5 show an evident decrease for
the assortative topology, in contrast with a significant in-
crease for the dissortative topology.

The straightforward understanding for such a change of
network conductance for the low-degree nodes with the de-
gree correlation topology is as follows. For the dissortative
topology, nodes with small degrees tend to be connected to
other high-degree nodes such that more parallel branches are
possible for the in/out-flows to/from the low-degree nodes.
Therefore, the network conductance for the low-degree
nodes under dissortativity is enhanced due to the presence of
the neighboring high-degree nodes. In contrast, for the assor-
tative topology, nodes with small degrees appear to be con-
nected with the similarly low-degree nodes, which results in
a reduced number of possible parallel flow branches. Thus,
the network conductance for the low-degree nodes with the
assortative topology decrease correspondingly. To verify this,
the mean nearest neighbor functions Knn�k� is plotted in Fig.
2�B� for the uncorrelated and correlated scale-free networks.

To document the above analysis, we further carry out a
heuristical derivation of network conductance in the picture
of transport backbone using a simplified branching process.
�19� If we ignore the loops on networks, the conductance
between node A and node B can be modeled �19� by a trans-
port backbone with the average branching factor ��k�
=Knn�k�−1. In fact, the neglect of loops is reasonable when
the networks considered are sparsely connected. So it is
straightforward that the conductance ga between node A and
the infinite distance can be derived from the recursion rela-
tions �10,19� as ga=k�1−1 /��. For scale-free networks, we
only need to concentrate on the nodes with small degrees
because most nodes are distributed in the range of low de-
grees. So we assume ��k�	�kr−1, where � is a constant,
depending on the degree-mixing property of networks and r
is the Newman factor. It can be seen from Fig. 2�B� that this
relation holds for small values of degrees. Thus, the conduc-
tance Gab between node A and node B can be approximately
written as Gab=g�k� /2, provided that the values of ka and kb
are small. The average conductance �G� on the network
therefore can be written as

�G� 

1

2
�

kmin

kc

g�k�P�k�dk , �3�

where kc is the cutoff value for small degrees and P�k�
	k−�. The calculated average network conductance by Eq.

�3� is plotted in Fig. 2�A�. We can find that the calculated
tendencies are qualitatively consistent with the numerical
simulations. The discrepancy between numerical and theoret-
ical results may come from loops and specific topology
structures, which have been neglected in the branching pro-
cess.

When we average the scale-free network conductance be-
tween each pair of nodes, the contributions from the low-
degree nodes are dominant by virtue of large numbers of
low-degree nodes. Therefore, network transport efficiency on
scale-free networks changes correspondingly with the degree
correlation. Similar reason accounts for the peak shift for the
pdf ��G� as shown in Fig. 1.

In addition, a power-law tail distribution of network con-
ductance can be observed in both pdf ��G� and cdf F�G� as
illustrated in Fig. 1. Such a power-law tail has been reported
in Ref. �8� for the uncorrelated scale-free networks. Here we
find the scaling exponent of the power-law tail is related to
the degree correlation. In Fig. 2�D�, we fit the cumulative
power-law distribution as F�G�	G−�. The fitted power-law
exponent � clearly shows a tendency to decrease with the
Newman factor r.

We can understand this variation in � with the degree
correlation through an analytical derivation. Owing to the
fact that the distribution of conductance Gab is characterized
by the distribution of nodes with small degrees, the condi-
tional probability �8� Pr�ka�kb� with the constraint ka�kb

can be described as Pr�ka�kb�dka	ka
−2�+1dka. Here, we fur-

ther make an explicit assumption for ga associated with r as
ga	ka

1+r, i.e., Gab	ka
1+r for small-degree nodes. Such as-

sumption agrees with the maximum-flow problem which
states that the average maximum-flow between a pair of
nodes is proportional to the smaller degree k. �20� We thus
obtain distributions of the cdf F�G�	G−�2�−2�/�1+r�. It can be
seen from Fig. 2�D� that the predictions of �theory = �2�
−2� / �1+r� shows the similar tendency as the fitted results.

Erdös-Rényi random networks. Network conductance for
Erdös-Rényi networks with size of N=3000, and average

degree k̄=8 is plotted in Fig. 3�A�. In contrast with scale-free
networks, pdf ��G� and average network conductance �G�
for Erdös-Rényi networks show no significant dependence
on degree correlation topologies. Although the tuning of de-
gree correlation can induce some changes in network con-
ductance for small-degrees nodes, but most nodes are distrib-

uted around the average degree k̄ due to the Poisson degree
distribution. Therefore, the contributions from the low-
degree nodes are trivial such that the tuning of degree corre-
lation does not significantly alter the average network con-
ductance.

Empirical networks. We calculate network conductance in
two empirical networks: the Autonomous Systems �AS� level
of the Internet and the U.S. Power Grid �PG� networks. The
degree distributions of the two networks show a scale-free
characteristics, with �=2.21
0.08 for the AS network and
�=3.7
0.2 for the power grid networks. The Newman
factors r are rAS=−0.2149 and rPG=−0.03, respectively.
In Fig. 3�B�, the fitted exponents � of F�G�	G−� are �AS
=2.46
0.05 and �PG=4.74
0.08, respectively. We
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theoretically calculate the scaling exponent � as �AS
theory

=3.08 and �PG
theory =5.24. The results for empirical networks

are qualitatively consistent with that of the scale-free random
network model. The large discrepancy between the real net-
works and the theoretical predictions may come from spe-
cific network topologies and loops that have been neglected
in the theoretical formula.

In summary, we have found that transport on scale-free
random networks vary significantly with the degree correla-
tions. An approach for the tuning of transport efficiency on
scale-free networks through dissortative or assortative topol-

ogy is proposed. We elucidate that the unique transport be-
havior for scale-free networks results from the heterogeneity
of the degree distributions. We believe that our results pro-
vide some insights into the design of network transport.
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FIG. 3. �Color online� �A� The pdf ��G� for Erdös-Rényi networks with different degree correlations. The inset shows the change of
average network conductance as a function of Newman factor r. �B� The cdf F�G� for two empirical networks: the internet structure �21� at
the autonomous system level �AS980215� and the U.S. power grid networks �22�.
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